Marrow stromal cell transplantation in stroke and traumatic brain injury.
نویسندگان
چکیده
There is a paucity of therapies for most central nervous system (CNS) disorders. Bone marrow stromal cells (MSCs) are a mixed cell population, including stem and progenitor cells, and are currently a strong candidate for cell-based therapy in "brain attack", including stroke, and traumatic brain injury (TBI), since they are easily isolated and can be expanded in culture from patients without ethical and technical problems. Although it has been suggested that trans-differentiation of MSCs into cells of neural lineage may occur in vitro, no one has yet observed that MSCs give rise to fully differentiated and functional neurons in vivo. The overwhelming body of data indicate that bioactive factors secreted by MSCs in response to the local environment underlie the tissue restorative effects of MSCs. The MSCs that are employed in this therapy are not necessarily stem cells, but progenitor and differentiated cells that escape immune system surveillance and survive in the CNS even for transplantation of allogeneic or xenogeneic MSCs. The injured CNS is stimulated by the MSCs to amplify its intrinsic restorative processes. Treatment of damaged brain with MSCs promotes functional recovery, and facilitates CNS endogenous plasticity and remodeling. The current mini-review is mainly based on our data and focuses on possible cellular and molecular mechanisms of interaction of MSCs with glia, neurons and vessels after brain attack. The transplantation of MSCs opens up new avenues of cell therapy and may provide an effective treatment for various CNS diseases.
منابع مشابه
Comparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کاملP91: Auto Graft Transplantation of Adult Human Neural Stem Cells in Treatment of Traumatic Brain Injury as a Hypothesis
Traumatic brain injury (TBI) leading to 5 million deaths annually is 1 of the 5 major causes of morbidity and mortality worldwide. In Iran, accidents are the main cause of death in youth as well as a dominant factor in reducing quality of life. In developing countries TBI incidence as one of the worst consequences of these accidents is growing due to wide use of motor-vehicles. Therapeutic stra...
متن کاملO13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats
Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملA Comparative Study of Therapeutic Benefits of Intraspinal and Intravenous Bone Marrow Stromal Cell Administration to Spinal Cord Injuries
Background: Recent reports demonstrated that intravenous route as a minimally invasive method, similar to direct injection, is suitable for bone marrow stromal cell (BMSC) transplantation. In this study, we made a comparison of intraspinal and intravenous route of BMSC administration to repair injured spinal cord tissue. Methods: Six groups of adult female rats were used in this study. Laminect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 456 3 شماره
صفحات -
تاریخ انتشار 2009